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Abstract

Numerical simulation of PDEs is notoriously computationally challenging, often
requiring significant expert hand-tuning to achieve high-fidelity results in reason-
able time frames. Towards this end, recent emphasis has been placed on leveraging
machine-learned neural operators to amortize the simulation cost, thereby circum-
venting such hand-crafted setup. Recent interest has honed in on leveraging such
neural operators for robust control in nonlinear dynamical systems, where hand-
crafted models of dynamics tend to lack insufficient fidelity to produce high-quality
control. However, the deployment of such neural operator-based control to edge
devices is infeasible due to the significant computational burden arising from com-
puting the kernel integral operator, both in older graph-based operator methods
and more recent Fourier Neural Operators. For this reason, we propose a new
method building upon Winograd convolutions to efficiently compute the kernel
integral transform on edge devices in settings where regular mesh discretizations
are present. In such cases, we demonstrate that our proposed Winograd Neural
Operator achieves a speedup of roughly 33% over FFT-based alternatives in PDE
benchmark tasks.

1 Introduction

The use of partial differential equations (PDEs) to describe aspects of nature has a long-standing
history, extending back to the study of fluid mechanics, heat flow, and plasma physics [1, 2]. Tra-
ditionally, PDEs are posited as an appropriate description of a system, a famous example being
the Navier-Stokes equations. For instance, in a linear 1D second-order PDE, we assume the
evolution of a state u(x, t) : R × R → R can be prescribed by some equation of the form
a1uxx + a2uxt + a3utt + a4ux + a5ut + a6u = f(x, t), where we denote ∂u/∂x by ux and
collect instance-dependent parameters into θ.

“Solving” such PDEs is then defined to mean providing a strategy by which u can be queried for
any (x, t, θ) pair of interest from some initial condition (x0, t0). The solution of such systems,
however, quickly becomes analytically intractable, thus having led to extensive study in the numerical
simulation of such systems [3, 4, 5, 6, 7]. Despite significant progress in computing hardware and
their extensive use in engineering for high fidelity reconstructions of various phenomena, large
scale simulations remain a challenging task. For instance, ensemble weather forecasting can only
accomodate a few tens of simulations from different initial conditions to issue probabilistic forecasts
of short-term weather events.

Therefore, there remains much interest in accelerating such simulation, increasingly leveraging
machine learning systems [8]. In particular, such approaches generally seek to learn a parametric flow
map Fφ(x, t, θ), where simulations are amortized over instance conditions, such that, after training,
any θ and initial condition (x0, t0) can simulated forward arbitrarily [9, 10, 11, 12, 13, 14, 15, 16,
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Figure 1: WNO introduces a novel Winograd Neural Operator to enable significant speedup in
inference without deterioration in inference accuracy by leveraging the Winograd transform to
compute the kernel integral transform of neural operators.

17, 18, 19]. This in turn enables rapid inference for multi-query tasks such as optimization, Bayesian
inference and uncertainty quantification.

Given the emergence of such accelerated simulation schemes, there has been recent emerging interest
in their application to online control in difficult-to-model nonlinear dynamical systems [20], such
as for nuclear reactors [21] and traffic control [22]. Such online dynamical control is especially of
interest in edge systems, since the deployment of such robust control oftentimes cannot handle the
additional latency encountered in communicating from the edge device to a stationed server. Work on
inference acceleration on edge devices has recently become of interest due to the pervasive use of
machine learning in robotics and Internet of Things devices [23, 24, 25, 26].

Towards this end, much of the efforts of the edge-ML community are focused on reducing the
FLOPs (floating-point operations) required for inference, typically through post-training pruning,
student-teacher training, or quantization [27, 28, 29, 30, 31]. Such efforts, however, are maximally
effective when crafted into bespoke methods for particular architectures, apparent from the profundity
of quantization works aimed at different models [32, 29, 33]. Towards this end, we propose extending
the neural operator line of work by introducing a Winograd Neural Operator, which reduces the
FLOPs required for inference compared to the common neural operators used in practice.

In particular, neural operators all center their choices surrounding the key kernel integral operator.
Prior works focused on exploiting the generality offered by graph neural networks (GNNs) for esti-
mating this operator over arbitrarily discretized spatial domains [34, 35]. To remain computationally
tractable, however, such networks impose further sparsification, thereby reducing their resulting
accuracies. For this reason, a parallel approach [36] based on the Fast Fourier Transform (FFT) has
grown in popularity in the case of having a regular spatial discretization. Such networks, however,
typically have a CNN backbone in addition to their components operating in the Fourier domain,
limiting their deployability to edge devices. We, therefore, demonstrate Winograd Neural Operator
achieves state-of-the-art accuracy on PDEs with regular spatial discretization while greatly improving
upon the computational cost of existing techniques. In particular, our contributions are as follows:

• Introducing a novel operator architecture that retains inference accuracy of current operator
methods for PDEs with regular spatial gridding while improving inference speeds by ≈ 2x.

• Demonstrating the practical utility of the WNO framework across a suite of PDEs.
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2 Background

2.1 Neural Operators

For surrogate models, of particular interest is the solution of PDEs with spatial coordinates x ∈ Rd
and defined over a system with instance-specific parameters a ∈ Rd → R. These may be of the form:

(Lau)(x) = f(x), x ∈ D (1)
u(x) = u0, x ∈ ∂D (2)

Concretely, an example of such a system may be the modeling of the distribution of charge density
u over a sheet with spatially varying conductivity a. An ML surrogate model would be trained on
various instances of a and u.

Most abstractly, the operator learning problem can be then formulated as seeking to learn a map
G : A → U between two function spaces A and U , where observations D := {(ai, ui)} have been
made i.e. G inverts the action of La in Equation 1. We assume that there exists some true operator G†

such that u = G†(a). While many different learning-based approaches have been proposed to solve
this learning problem, they all can be abstractly framed as seeking to recover this true map, formally

min
G

||G − G†||2L2(A,U) =

∫
A
||G(a)− G†(a)||2Uda. (3)

In practice, however, full observation of functions is not possible and are instead characterized by their
evaluation on a discretized spatial grid. In particular, dataset observations ui are typically obtained by
running finite-element and finite-difference (FEM) solvers over input conditions ai. These methods
discretize the spatial dimension into a finite set of points {xi}, called “meshing,” with which spatial
derivatives are approximated. High-fidelity PDE simulation often requires significant insight to
appropriately perform such discretization, with special care required for spatial meshing, evidenced
by the increasing interest in producing grid-free methods for PDE simulation [37, 38, 39, 40]. We,
therefore, seek to learn the operator by minimizing Equation (3) over its discretization:

φ∗ = argmin
ϕ

N∑
i=1

K∑
k=1

||Gφ(ai)(xk)− u
i
(xk)||22. (4)

As mentioned, many approaches to amortized ODE/PDE solution have been proposed, from lever-
aging CNNs to more recent discretization-free DeepONets and neural operators [41, 42]. The fully
convolutional architecture used in [43] requires train and test solution instances to be restricted
to a fixed mesh size, which means their error grows when tested on higher-fidelity simulations
downsampled to the same grid, without retraining to accomodate different fidelities. By contrast,
neural operators aim to act on any discretization of the input fucntion, can be evaluated on any point
of the output domain, and converge to a continuum operator as the discretization is refined.

Neural operators seek to learn a parameterized representation of a kernel integral operator. That is,
the initial state is lifted into a higher dimensional representation v : X → Rdv , which is then evolved
over the time discretization of interest, namely from t = 0, ..., T − 1. Such an evolution consists of

vt+1 = σ(Wvt(x) + (Kϕ(θ)vt)(x)) where (Kϕ(θ)vt)(x) :=
∫
D

kϕ(x, y, θ(x), θ(y))vt(y)dy, (5)

where kϕ is the learned kernel of interest. The learning of such a kϕ is universal amongst operator
methods, as it serves as the natural analog of a linear layer for functional data analysis. Methods in
this space, therefore, divide in how this kernel integral operator is computed. Certain approaches,
for example, approximate this integral directly with a numerical discretization, namely assuming the
kernel has a small bounded support Br(x) around each x:∫

D

kϕ(x, y, θ(x), θ(y))vt(y)dy ≈ 1

|N (x)|
∑

yi∈N (x)

kϕ(x, yi, θ(x), θ(yi))vt(yi)dy. (6)

In the case of regular gridding over the spatial domain, this sum can be efficiently estimated using a
standard convolution, as done in the FCN network of [44]. If spatial domains are irregular, extensions
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such as the Graph Neural Operator (GNO) [34] proposed leveraging graph neural networks, where
the discretization is naturally taken to define the GNN topology, from which Equation (6) can be
computed via standard aggregation operations. Such a method was similarly applied in an extension
to Multipole Graph Neural Operators (MGNO) in [35]. While such methods offer expressivity and
are able to handle nonhomogeneous spatial discretizations, they suffer from the high computational
cost in directly approximating the aforementioned integral.

An alternative to the aforementioned approaches that attempts to mitigate this computational burden
is to make structural assumptions to simplify the evaluation of Equation (5). For instance, under the
assumption the kernel is translation invariant and has no dependence on θ, the kernel integral operator
simplifies to a convolution with the unknown kernel kϕ(x − y). To avoid directly estimating this
convolution, one line of work reparameterized the kernel under a Fourier transform [36, 45]. That is,
they proposed learning kϕ instead in Fourier space, as follows

(Kϕ(θ)vt)(x) = F−1 (Rϕ · (Fvt)) (x), (7)

where F is the Fourier transform and Rϕ the learned Fourier-transformed kernel. Alternative methods
have also been proposed to learn the kernel directly in real space, such as in [46], where nonlinear
activations are specifically constructed to avoid aliasing artifacts.

2.2 Winograd Convolutions

Given the prevalence of computer vision in robotics, there is little surprise in the research interest
placed in the optimization of CNNs to fit in restricted compute and energy budgets. Towards this end,
efforts have demonstrated that convolutions are the most demanding component of CNNs [47, 48].
Such a finding, in turn, has compelled significant work towards their optimization. One such line
of work proposed performing convolutions in the Fourier domain rather than in the measured space,
paralleling the optimization exploited by the Fourier Neural Operator.

In addition to this line of work focusing on optimizing the computation of convolutions with mathe-
matical reformulation, there is an orthogonal line of work concentrating on specifically reframing the
computation to lend itself better to particular aspects of the hardware. In particular, a well-known
property of hardware is the greater computational resources required to compute a multiply than
an addition operation. Such a property is especially important in settings of limited compute or
energy budget, where any savings can make the difference of whether or not a model can be deployed.
This, in turn, has led to adjustments of architectures to replace multiply operations with addition
operations, occasionally with the seeming increase in total operation count, specifically due to this
near-universal property. One particular instance of this is in the optimization of the convolution
operations in CNNs, where a method known as Winograd convolutions have been demonstrated to
achieve greater computational performance than standard alternatives [49, 50, 51].

The Winograd algorithm is a general strategy for accelerating the computation of the product of
two polynomials. That is, for two polynomials p(x) and q(x), certain problems can be reframed to
seeking the evaluation at some point of interest x0, i.e. p(x0)q(x0). Naive implementation of this
operation would likely proceed through the separate computation of each factor followed by a product
or computation of the coefficients of the resulting polynomial product p(x)q(x) and subsequently
evaluating the result at x0. The Winograd approach follows the latter path but additionally reframes
the problem of seeking the coefficients as solving a system of linear equations, where the equations
are formed by evaluating p(x)q(x) at a series of points {xi} that can be efficiently computed, often
taken to be values such as 0,±1, and ∞.

This framing as a product of polynomials has been leveraged for a diverse array of problems, including
the multiplication of large integers. Of interest herein is its application to the computation of discrete
convolution, where it was demonstrated to be minimal in the number of multiplies required to perform
this computation [52]. In particular, if we assume some f is being convolved with a discretized kernel
k ∈ Rr with the result in Rm, the Winograd convolution takes on a form resembling the structure of
the FFT convolution approach, although the transform space differs:

f ∗ k = A⊤[(Gk) · (B⊤f)], (8)

where A,G, and B are matrices that are known for particular tuples of (m, r). Such matrices are
often denoted by the general Winograd parameterization F (m, r). In practice, however, such matrices
are only defined for sufficiently small m, r. As a result, Winograd convolutions in practice act on

4



subregions of the matrices encountered. That is, if f ∗ g ∈ Rd for d ≫ 3, the computation can be
decomposed into ⌈d/m⌉ separate convolutions, with each computed in the aforementioned manner
and subsequently concatenated together. For this reason, Winograd convolutions tend to be leveraged
only in cases where kernel sizes are small, generally for k = 3 or k = 5.

3 Method

We now discuss the modification of current neural operator architectures required to enable using
Winograd convolutions, specifically focusing on modifications to the base architecture in Section 3.1
and corresponding implementation details in Section 3.2. Subsequent demonstration of empirical
results of the proposed methods is provided in Section 4.

3.1 WNO: Model Architecture

At its core, the Winograd Neural Operator simply computes the kernel convolutions during inference
in the alternate approach offered by Winograd. As mentioned, practical implementations of FNOs,
such as in [10], generally augment the core Fourier domain operation by one in the real domain,
resulting in a layer

vt+1 = σ(Wvt + kψ ∗ vt + F−1 (Rϕ · (Fvt))), (9)

where kψ corresponds to the real-space kernel and Rϕ the Fourier-domain kernel. In the WNO, we
propose computing this real-space convolution via a Winograd operation, resulting in this final form:

vt+1 = σ(Wvt +A⊤[(Gkψ) · (B⊤vt)] + F−1 (Rϕ · (Fvt))), (10)

where A,G, and B are again pre-known matrices chosen by the spatial discretization of vt and kernel
dimension. Notably, while our primary point of interest lies in edge deployment and hence primarily
in accelerating inference, this computational reframing can also be leveraged for accelerating training
passes. The full architectural structure is shown in Figure 1.

Importantly, while we focus on the Fourier Neural Operator in this exposition due to its popularity
compared to alternative approaches in the case of homogeneous gridding, the approach discussed
herein can be leveraged in any case where convolutions form the backbone of a neural operator, such as
in Convolutional Neural Operators [46]. In such cases, the speedup demonstrated in Section 4 would
likely be even more pronounced due to the increased presence of convolutions in the architecture.

3.2 WNO: Implementation Details

Implementation of the WNO was specifically performed for PyTorch compiled with a CUDA backend
[53]. In this case, PyTorch implementations of nn.Conv2d dispatch to Nvidia’s CUDA Deep Neural
Network (cuDNN) library, which provides accelerated implementations of low-level primitives, such
as pooling, softmax, normalization, matrix multiplies, and convolutions. We, therefore, are specifically
interested in the implementation of convolutions, provided by cudnnConvolutionForward.

This method takes as input pointers to buffers of the input and filter data and a selection of what low-
level convolution should be executed, where the former buffers are implicitly allocated by PyTorch
as in invoking the typical call tensor.to("cuda"). For the latter, there are a number of methods
available, specifically GEMM,FFT,WINOGRAD. Each of these methods has several optimized variants
that leverage tiling and fusion, which we additionally consider in Section 4, yet the core part of the
algorithm remains unchanged in such cases. Importantly, unlike other forms of optimization, such as
pruning or quantization, swapping out the convolution method retains the same numerical values in
the resulting computation, so there is no loss of accuracy, as we verify in Section 4.

The GEMM algorithm transforms the computation of a convolution into a corresponding matrix multiply
problem. FFT and WINOGRAD are implemented as previously described. Most libraries relying on
cuDNN, including PyTorch, generally dispatch using the FASTEST option due to its generality and
convenience, which dynamically determines the appropriate algorithm to use at runtime based on
the matrix size and structure. Despite the offered convenience, however, such dynamic dispatch
inevitably results in runtime overhead, as we empirically demonstrate in Section 4.
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4 Experiments

We now study the efficiency of WNO empirically across several PDE benchmark tasks from [10]. All
implementations build off of the baseline of the FNO provided in their package. As discussed in the
preceding section, we specifically consider the following variations of convolution dispatch, with full
descriptions of each available in the CUDA documentation:

• CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM
• CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
• CUDNN_CONVOLUTION_FWD_ALGO_GEMM
• CUDNN_CONVOLUTION_FWD_ALGO_FFT
• CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING
• CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
• CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
• FASTEST

Over the following sections, we specifically consider the following tasks: 2D Darcy Flow, 2D
Shallow Water, and 2D Diffusion Reaction. Brief descriptions of the tasks are provided in the
following subsections and code is available at https://github.com/yashpatel5400/mcufno.
All experiments were conducted on a single Nvidia RTX 2080 Ti GPU.

Figure 2: Examples of 2D Darcy Flow, Shallow Water and Diffusion-Reaction problems from
benchmark datasets generated using [10]

4.1 2D Darcy Flow

We consider the 2D Darcy Flow problem over the unit square, governed by the following equations:
−∇ · (a(x)u(x)) = f(x) x ∈ (0, 1)2 (11)

u(x) = 0 x ∈ ∂(0, 1)2,

where a : (0, 1)2 → R+ is the diffusion coefficient, u : (0, 1)2 → R2 is the flow, and f : (0, 1)2 →
R2 is the forcing function. We, therefore, are interested in learning a map G : a → u.

4.2 2D Shallow Water

We consider the 2D Shallow Water problem, which is commonly employed to model free-surface
flow problems. We specifically consider the spatial domain Ω = [−2.5, 2.5]2, governed by:

−∂th+ ∂xhu+ ∂yhv = 0

∂thu+ ∂x

(
u2h+

1

2
grh

2

)
= −grh∂xb (12)

∂thv + ∂y

(
v2h+

1

2
grh

2

)
= −grh∂yb,

where u, v ∈ R are respectively the velocities in the x and y directions, h : R2 → R is the water
depth, and b : R2 → R is the bathymetry. We are interested here in learning a map G : b → h.
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4.3 2D Diffusion Reaction

We also consider the 2D Diffusion-Reaction problem over the unit square, governed by:
∂tu = Du∂xxu+Du∂yyu+Ru ∂tv = Dv∂xxv +Dv∂yyv +Rv, (13)

where Du, Dv ∈ R are respectively the diffusion coefficients for the activator and inhibitor, Ru, Rv :
R2 → R respectively the activator and inhibitor reaction functions, and u : R2 → R2 the spatially
varying flow. We are interested in learning a map G : R → u, where R = (Ru, Rv) : R2 → R2. The
specific activator and inhibitor reaction functions are as follows:

Ru(u, v) = u− u3 − k − v (14)
Rv(u, v) = u− v. (15)

4.4 PDE Benchmark Results

We now present the results over the aforementioned tasks. Notably, the WINOGRAD and
WINOGRAD_NONFUSED algorithms are only available for small kernels. In practice, FNOs gener-
ally use kernels of such sizes, lending them naturally to this implementation. We report the results of
the timings for kernels of size 3× 3 in Table 1. In all cases, differences from the baseline models
were confirmed to be 0 to within machine precision.

Table 1: Inference times across tasks are shown below, where times were assessed over minibatches
of 50 i.i.d. test samples. Average time of inference for a single sample in the minibatch is reported,
with standard deviations in parentheses.

Darcy Flow Shallow Water Diffusion Reaction

IMPLICIT_GEMM 0.0063 (0.00184) 0.0079 (0.0019) 0.00962 (0.0019)
IMPLICIT_PRECOMP_GEMM 0.00644 (0.00068) 0.00774 (0.00066) 0.01033 (0.00076)
GEMM 0.00778 (0.00014) 0.00901 (0.00017) 0.01088 (0.0004)
FFT 0.02164 (0.00051) 0.02261 (0.00106) 0.0238 (0.00053)
FFT_TILING 0.00904 (0.00012) 0.00987 (0.00028) 0.01155 (0.00028)
WINOGRAD 0.00611 (0.00011) 0.00698 (0.0001) 0.00898 (0.00019)
WINOGRAD_NONFUSED 0.0128 (0.00018) 0.01385 (0.00016) 0.01574 (0.00047)
FASTEST 0.04992 (0.00042) 0.05196 (0.00083) 0.05513 (0.00252)

We, therefore, see that the WINOGRAD convolution has consistently lower execution times across
tasks compared to alternate implementations. Notably, the FASTEST is also consistently the slowest
algorithm. While seemingly surprising, this is largely due to the experimental setup, since each
trial is run from scratch. As a result, the dominant cost is in the logic of ascertaining the optimal
algorithm. In the standard use case, such a determination is typically made once and reused across
calls to amortize the cost. Nonetheless, this demonstrates that, if the hardware of deployment is fixed
and its architecture specifics known, significant improvements in efficiency can be made through the
preselection of a convolution algorithm.

5 Discussion

We have presented WNO, a framework for accelerating inference of neural operators towards the end
of streamlining their deployment to edge devices. This work suggests many directions for extension.
In particular, much work in the application of Winograd convolutions has focused on its performance
post quantization, since the Winograd algorithm is known to exhibit numerical instability [54, 55, 56].
Towards this end, work to demonstrate the numerical stability of quantized Winograd operators would
be of great interest. Similarly, as discussed in the main text, the focus for this study was on inference;
however, a similar extension to cudnnConvolutionBackwardData should enable the acceleration
of backward passes and, therefore, perhaps lead to similar performance gains in the training of neural
operators. Further, empirical testing herein was limited to synthetic dynamical systems: application
of this framework to large-scale engineering systems is of great practical interest. Finally, while not
the focus of this work, neural operators can also potentially be adapted to construct efficient methods
for computer vision tasks, as has been done for convolutional architectures [57].
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